Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere

Here we report the discovery of two Tupanvirus strains, the longest tailed Mimiviridae members isolated in amoebae. Their genomes are 1.44–1.51 Mb linear double-strand DNA coding for 1276–1425 predicted proteins. Tupanviruses share the same ancestors with mimivirus lineages and these giant viruses p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-02, Vol.9 (1), p.749-12, Article 749
Hauptverfasser: Abrahão, Jônatas, Silva, Lorena, Silva, Ludmila Santos, Khalil, Jacques Yaacoub Bou, Rodrigues, Rodrigo, Arantes, Thalita, Assis, Felipe, Boratto, Paulo, Andrade, Miguel, Kroon, Erna Geessien, Ribeiro, Bergmann, Bergier, Ivan, Seligmann, Herve, Ghigo, Eric, Colson, Philippe, Levasseur, Anthony, Kroemer, Guido, Raoult, Didier, La Scola, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we report the discovery of two Tupanvirus strains, the longest tailed Mimiviridae members isolated in amoebae. Their genomes are 1.44–1.51 Mb linear double-strand DNA coding for 1276–1425 predicted proteins. Tupanviruses share the same ancestors with mimivirus lineages and these giant viruses present the largest translational apparatus within the known virosphere, with up to 70 tRNA, 20 aaRS, 11 factors for all translation steps, and factors related to tRNA/mRNA maturation and ribosome protein modification. Moreover, two sequences with significant similarity to intronic regions of 18 S rRNA genes are encoded by the tupanviruses and highly expressed. In this translation-associated gene set, only the ribosome is lacking. At high multiplicity of infections, tupanvirus is also cytotoxic and causes a severe shutdown of ribosomal RNA and a progressive degradation of the nucleus in host and non-host cells. The analysis of tupanviruses constitutes a new step toward understanding the evolution of giant viruses. Giant viruses are the largest viruses of the known virosphere and their genetic analysis can provide insights into virus evolution. Here, the authors discover Tupanvirus, a unique giant virus that has an unusually long tail and contains the largest translational apparatus of the known virosphere.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03168-1