Optimization of Traffic Congestion Management in Smart Cities under Bidirectional Long and Short-Term Memory Model

To solve the increasingly serious traffic congestion and reduce traffic pressure, the bidirectional long and short-term memory (BiLSTM) algorithm is adopted to the traffic flow prediction. Firstly, a BiLSTM-based urban road short-term traffic state algorithm network is established based on the colle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2022-04, Vol.2022, p.1-8
Hauptverfasser: Zhai, Yujia, Wan, Yan, Wang, Xiaoxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To solve the increasingly serious traffic congestion and reduce traffic pressure, the bidirectional long and short-term memory (BiLSTM) algorithm is adopted to the traffic flow prediction. Firstly, a BiLSTM-based urban road short-term traffic state algorithm network is established based on the collected road traffic flow data, and then the internal memory unit structure of the network is optimized. After training and optimization, it becomes a high-quality prediction model. Then, the experimental simulation verification and prediction performance evaluation are performed. Finally, the data predicted by the BiLSTM algorithm model are compared with the actual data and the data predicted by the long short-term memory (LSTM) algorithm model. Simulation comparison shows that the prediction results of LSTM and BiLSTM are consistent with the actual traffic flow trend, but the data of LSTM deviate greatly from the real situation, and the error is more serious during peak periods. BiLSTM is in good agreement with the real situation during the stationary period and the low peak period, and it is slightly different from the real situation during the peak period, but it can still be used as a reference. In general, the prediction accuracy of the BiLSTM algorithm for traffic flow is relatively high. The comparison of evaluation indicators shows that the coefficient of determination value of BiLSTM is 0.795746 greater than that of LSTM (0.778742), indicating that BiLSTM shows a higher degree of fitting than the LSTM algorithm, that is, the prediction of BiLSTM is more accurate. The mean absolute percentage error (MAPE) value of BiLSTM is 9.718624%, which is less than 9.722147% of LSTM, indicating that the trend predicted by the BiLSTM is more consistent with the actual trend than that of LSTM. The mean absolute error (MAE) value of BiLSTM (105.087415) is smaller than that of LSTM (106.156847), indicating that its actual prediction error is smaller than LSTM. Generally speaking, BiLSTM shows advantages in traffic flow prediction over LSTM. Results of this study play a reliable reference role in the dynamic control, monitoring, and guidance of urban traffic, and congestion management.
ISSN:0197-6729
2042-3195
DOI:10.1155/2022/3305400