A Novel Approach for Permittivity Estimation of Lunar Regolith Using the Lunar Penetrating Radar Onboard Chang'E-4 Rover

Accurate relative permittivity is essential to the further analysis of lunar regolith. The traditional hyperbola fitting method for the relative permittivity estimation using the lunar penetrating radar generally ignored the effect of the position and geometry of antennas. This paper proposed a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-09, Vol.13 (18), p.3679, Article 3679
Hauptverfasser: Wang, Ruigang, Su, Yan, Ding, Chunyu, Dai, Shun, Liu, Chendi, Zhang, Zongyu, Hong, Tiansheng, Zhang, Qing, Li, Chunlai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate relative permittivity is essential to the further analysis of lunar regolith. The traditional hyperbola fitting method for the relative permittivity estimation using the lunar penetrating radar generally ignored the effect of the position and geometry of antennas. This paper proposed a new approach considering the antenna mounting height and spacing in more detail. The proposed method is verified by numerical simulations of the regolith models. Hence the relative permittivity of the lunar regolith is calculated using the latest high-frequency radar image obtained by the Yutu-2 rover within the first 24 lunar days. The simulation results show that the relative permittivity is underestimated when derived by the traditional method, especially at the shallow depth. The proposed method has improved the accuracy of the estimated lunar regolith relative permittivity at a depth of 0-3 m, 3-6 m, and 6-10 m by 35%, 14%, and 9%, respectively. The thickness of the lunar regolith at the Chang'E 4 landing site is reappraised to be 11.1 m, which improved by similar to 8% compared with previous studies.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13183679