Correlation between Microstructure and Mechanical Properties of Heat-Treated Ti–6Al–4V with Fe Alloying
The microstructure and mechanical properties of a newly developed Fe-microalloyed Ti–6Al–4V titanium alloy were investigated after different heat treatments. The volume fraction and the morphological features of the lamellar α phase had significant effects on the alloy’s mechanical performance. A da...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2020-07, Vol.10 (7), p.854 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructure and mechanical properties of a newly developed Fe-microalloyed Ti–6Al–4V titanium alloy were investigated after different heat treatments. The volume fraction and the morphological features of the lamellar α phase had significant effects on the alloy’s mechanical performance. A dataset showing the relationship between microstructural features and tensile strength, elongation, and fracture toughness was developed. A high aging temperature resulted in high plasticity and fracture toughness, but relatively low strength. The high strength favored the fine α and the slender β. The high aspect ratio of lamellar α led to high strength but low fracture toughness. The alloy with ~84 vol % α exhibited the highest strength and lowest fracture toughness because the area of its α/β-phase interface was the highest. Optimal comprehensive mechanical performance and heat-treatment procedures were thus obtained from the dataset. Optimal tensile strength, yield strength, elongation, and fracture toughness were 999 and 919 MPa, 10.4%, and 94.4 MPa·m1/2, respectively. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met10070854 |