Regulatory Effects of CsrA in Vibrio cholerae

CsrA is a posttranscriptional global regulator in Although CsrA is critical for survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the mutant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mBio 2021-02, Vol.12 (1)
Hauptverfasser: Butz, Heidi A, Mey, Alexandra R, Ciosek, Ashley L, Crofts, Alexander A, Davies, Bryan W, Payne, Shelley M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CsrA is a posttranscriptional global regulator in Although CsrA is critical for survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the growth cycle. We found that CsrA regulates 22% of the transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain how CsrA regulation affects such a large proportion of the transcriptome. Other direct targets include , encoding a central regulator in flagellar gene expression, and , encoding the virulence gene transcription factor AphA. We found that CsrA binds to the mRNA both and , and CsrA significantly increases AphA protein synthesis. The increase in AphA was due to increased translation, not transcription, in the presence of CsrA, consistent with CsrA binding to the transcript and enhancing its translation. CsrA is required for the virulence of and this study illustrates the central role of CsrA in virulence gene regulation. , a Gram-negative bacterium, is a natural inhabitant of the aqueous environment. However, once ingested, this bacterium can colonize the human host and cause the disease cholera. In order to successfully transition between its aqueous habitat and the human host, the bacterium must sense changes in its environment and rapidly alter gene expression. Global regulators, including CsrA, play an integral role in altering the expression of a large number of genes to promote adaptation and survival, which is required for intestinal colonization. We used transcriptomics and a directed CsrA-RNA coimmunoprecipitation to characterize the CsrA regulon and found that CsrA alters the expression of more than 800 transcripts in Processes regulated by CsrA include motility, the rugose phenotype, and virulence pathways. CsrA directly binds to the transcript and positively regulates the production of the virulenc
ISSN:2161-2129
2150-7511
DOI:10.1128/mBio.03380-20