Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers

Vascular disease in elderly patients is a growing health concern, with an estimated prevalence of 15–20% in patients above 70 years old. Current treatment for vascular diseases requires the use of a vascular graft (VG) to revascularize lower or upper extremities, create dialysis access, treat aortic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fibers 2022-02, Vol.10 (2), p.12
Hauptverfasser: He, Emma, Serpelloni, Stefano, Alvear, Phillip, Rahimi, Maham, Taraballi, Francesca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vascular disease in elderly patients is a growing health concern, with an estimated prevalence of 15–20% in patients above 70 years old. Current treatment for vascular diseases requires the use of a vascular graft (VG) to revascularize lower or upper extremities, create dialysis access, treat aortic aneurysms, and repair dissection. However, postoperative infection is a major complication associated with the use of these VG, often necessitating several operations to achieve complete or partial graft excision, vascular coverage, and extra-anatomical revascularization. There is also a high risk of morbidity, mortality, and limb loss. Therefore, it is important to develop a method to prevent or reduce the incidence of these infections. Numerous studies have investigated the efficacy of antibiotic- and antiseptic-impregnated grafts. In comparison to these traditional methods of creating antimicrobial grafts, nanotechnology enables researchers to design more efficient VG. Nanofibers and nanoparticles have a greater surface area compared to bulk materials, allowing for more efficient encapsulation of antibiotics and better control over their temporo-spatial release. The disruptive potential of nanofibers and nanoparticles is exceptional, and they could pave the way for a new generation of prosthetic VG. This review aims to discuss how nanotechnology is shaping the future of cardiovascular-related infection management.
ISSN:2079-6439
2079-6439
DOI:10.3390/fib10020012