Testing exotic scalars with HiggsBounds

The program HiggsBounds is a well-established tool for testing Beyond-the-Standard Model (BSM) theories with an extended Higgs sector against experimental limits from collider searches at LEP, Tevatron and LHC. Thus far, it could be applied to any neutral or charged Higgs bosons originating from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2022-07, Vol.82 (7), p.1-19, Article 584
Hauptverfasser: Bahl, Henning, Lozano, Victor Martin, Stefaniak, Tim, Wittbrodt, Jonas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The program HiggsBounds is a well-established tool for testing Beyond-the-Standard Model (BSM) theories with an extended Higgs sector against experimental limits from collider searches at LEP, Tevatron and LHC. Thus far, it could be applied to any neutral or charged Higgs bosons originating from the modified Higgs sector. Implicitly, these particles were assumed to exhibit a somewhat hierarchical Yukawa structure as present in the Standard Model, where in particular the couplings to first generation fermions could be neglected. In this work, we extend the HiggsBounds functionalities to go beyond these restrictions, thus making the code applicable to any neutral or charged BSM scalars. Moreover, we develop a new approach to implement experimental searches whose kinematic acceptance depends significantly on the values of the involved couplings. We achieve this by recasting the searches to general scalar models. Using this approach we incorporate relevant current experimental limits from LHC searches for exotic scalars, and present the implications of these limits for a dark matter scalar mediator model, a flipped Two-Higgs-Doublet Model and a supersymmetric model with R -parity violation.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-022-10446-2