Normal & reversed spin mobility in a diradical by electron-vibration coupling

π−conjugated radicals have great promise for use in organic spintronics, however, the mechanisms of spin relaxation and mobility related to radical structural flexibility remain unexplored. Here, we describe a dumbbell shape azobenzene diradical and correlate its solid-state flexibility with spin re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-10, Vol.12 (1), p.6262-6262, Article 6262
Hauptverfasser: Shen, Yi, Xue, Guodong, Dai, Yasi, Quintero, Sergio Moles, Chen, Hanjiao, Wang, Dongsheng, Miao, Fang, Negri, Fabrizia, Zheng, Yonghao, Casado, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:π−conjugated radicals have great promise for use in organic spintronics, however, the mechanisms of spin relaxation and mobility related to radical structural flexibility remain unexplored. Here, we describe a dumbbell shape azobenzene diradical and correlate its solid-state flexibility with spin relaxation and mobility. We employ a combination of X-ray diffraction and Raman spectroscopy to determine the molecular changes with temperature. Heating leads to: i) a modulation of the spin distribution; and ii) a “normal” quinoidal → aromatic transformation at low temperatures driven by the intramolecular rotational vibrations of the azobenzene core and a “reversed” aromatic → quinoidal change at high temperatures activated by an azobenzene bicycle pedal motion amplified by anisotropic intermolecular interactions. Thermal excitation of these vibrational states modulates the diradical electronic and spin structures featuring vibronic coupling mechanisms that might be relevant for future design of high spin organic molecules with tunable magnetic properties for solid state spintronics. In this manuscript, Negri, Zheng, Casado et al develop a stable and flexible diradical. Using a combination of experimental and theoretical techniques, they show how heating leads to change in the electronic and spin delocalizations ocurring between quinoidal and aromatic forms, and elucidate a unique spin-vibrational coupling.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26368-8