Laser-induced phase separation of silicon carbide

Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-11, Vol.7 (1), p.13562-13562, Article 13562
Hauptverfasser: Choi, Insung, Jeong, Hu Young, Shin, Hyeyoung, Kang, Gyeongwon, Byun, Myunghwan, Kim, Hyungjun, Chitu, Adrian M., Im, James S., Ruoff, Rodney S., Choi, Sung-Yool, Lee, Keon Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. Laser beam-induced processing is industrially relevant but often challenging to study in terms of underlying phase transformations. Here authors characterize formation of thin, phase-separated carbon and silicon layers on a silicon carbide substrate by laser-induced melting and solidification.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13562