A General Version of the Nullstellensatz for Arbitrary Fields
We prove a general version of Bezout’s form of the Nullstellensatz for arbitrary fields. The corresponding sufficient and necessary condition only involves the local existence of multi-valued roots for each of the polynomials belonging to the ideal in consideration. Finally, this version implies the...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2019-06, Vol.17 (1), p.556-558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a general version of Bezout’s form of the Nullstellensatz for arbitrary fields. The corresponding sufficient and necessary condition only involves the local existence of multi-valued roots for each of the polynomials belonging to the ideal in consideration. Finally, this version implies the standard Nullstellensatz when the coefficient field is algebraically closed. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2019-0046 |