New Exact Traveling Wave Solutions of the Time Fractional Complex Ginzburg-Landau Equation via the Conformable Fractional Derivative

In this study, the exact traveling wave solutions of the time fractional complex Ginzburg-Landau equation with the Kerr law and dual-power law nonlinearity are studied. The nonlinear fractional partial differential equations are converted to a nonlinear ordinary differential equation via a traveling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mathematical Physics 2021, Vol.2021, p.1-12
Hauptverfasser: Li, Zhao, Han, Tianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the exact traveling wave solutions of the time fractional complex Ginzburg-Landau equation with the Kerr law and dual-power law nonlinearity are studied. The nonlinear fractional partial differential equations are converted to a nonlinear ordinary differential equation via a traveling wave transformation in the sense of conformable fractional derivatives. A range of solutions, which include hyperbolic function solutions, trigonometric function solutions, and rational function solutions, is derived by utilizing the new extended G′/G-expansion method. By selecting appropriate parameters of the solutions, numerical simulations are presented to explain further the propagation of optical pulses in optic fibers.
ISSN:1687-9120
1687-9139
DOI:10.1155/2021/8887512