Odd dimensional analogue of the Euler characteristic
A bstract When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Künneth formula χ ( X × Y ) = χ ( X ) χ ( Y ). In terms of the Betti numbers b p ( X ), χ ( X ) = Σ p ( − 1) p b p ( X ), implying that χ ( X ) = 0 when X is odd dimensional. We seek a linear com...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2021-12, Vol.2021 (12), p.1-38, Article 178 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
When compact manifolds
X
and
Y
are both even dimensional, their Euler characteristics obey the Künneth formula
χ
(
X × Y
) =
χ
(
X
)
χ
(
Y
). In terms of the Betti numbers
b
p
(
X
),
χ
(
X
) = Σ
p
(
−
1)
p
b
p
(
X
), implying that
χ
(
X
) = 0 when
X
is odd dimensional. We seek a linear combination of Betti numbers, called
ρ
, that obeys an analogous formula
ρ
(
X × Y
) =
χ
(
X
)
ρ
(
Y
) when
Y
is odd dimensional. The unique solution is
ρ
(
Y
) =
−
Σ
p
(
−
1)
p
pb
p
(
Y
). Physical applications include: (1)
ρ →
(
−
1)
m
ρ
under a generalized mirror map in
d
= 2
m
+ 1 dimensions, in analogy with
χ →
(
−
1)
m
χ
in
d
= 2
m
; (2)
ρ
appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on
X
4
× Y
7
is given by
χ
(
X
4
)
ρ
(
Y
7
) =
ρ
(
X
4
× Y
7
) and hence vanishes when
Y
7
is self-mirror. Since, in particular,
ρ
(
Y × S
1
) =
χ
(
Y
), this is consistent with the corresponding anomaly for Type IIA on
X
4
× Y
6
, given by
χ
(
X
4
)
χ
(
Y
6
) =
χ
(
X
4
× Y
6
), which vanishes when
Y
6
is self-mirror; (3) In the partition function of
p
-form gauge fields,
ρ
appears in odd dimensions as
χ
does in even. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP12(2021)178 |