Cloud Detection of Remote Sensing Image Based on Multi-Scale Data and Dual-Channel Attention Mechanism

Cloud detection is one of the critical tasks in remote sensing image preprocessing. Remote sensing images usually contain multi-dimensional information, which is not utilized entirely in existing deep learning methods. This paper proposes a novel cloud detection algorithm based on multi-scale input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (15), p.3710
Hauptverfasser: Yan, Qing, Liu, Hu, Zhang, Jingjing, Sun, Xiaobing, Xiong, Wei, Zou, Mingmin, Xia, Yi, Xun, Lina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud detection is one of the critical tasks in remote sensing image preprocessing. Remote sensing images usually contain multi-dimensional information, which is not utilized entirely in existing deep learning methods. This paper proposes a novel cloud detection algorithm based on multi-scale input and dual-channel attention mechanisms. Firstly, we remodeled the original data to a multi-scale layout in terms of channels and bands. Then, we introduced the dual-channel attention mechanism into the existing semantic segmentation network, to focus on both band information and angle information based on the reconstructed multi-scale data. Finally, a multi-scale fusion strategy was introduced to combine band information and angle information simultaneously. Overall, in the experiments undertaken in this paper, the proposed method achieved a pixel accuracy of 92.66% and a category pixel accuracy of 92.51%. For cloud detection, the proposed method achieved a recall of 97.76% and an F1 of 95.06%. The intersection over union (IoU) of the proposed method was 89.63%. Both in terms of quantitative results and visual effects, the deep learning model we propose is superior to the existing semantic segmentation methods.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14153710