Extend the Levin-Wen model to two-dimensional topological orders with gapped boundary junctions

A bstract A realistic material may possess defects, which often bring the material new properties that have practical applications. The boundary defects of a two-dimensional topologically ordered system are thought of as an alternative way of realizing topological quantum computation. To facilitate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2022-07, Vol.2022 (7), p.88-35, Article 88
Hauptverfasser: Wang, Hongyu, Hu, Yuting, Wan, Yidun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract A realistic material may possess defects, which often bring the material new properties that have practical applications. The boundary defects of a two-dimensional topologically ordered system are thought of as an alternative way of realizing topological quantum computation. To facilitate the study of such boundary defects, in this paper, we construct an exactly solvable Hamiltonian model of topological orders with gapped boundary junctions, where the boundary defects reside, by placing the Levin-Wen model on a disk, whose gapped boundary is separated into multiple segments by junctions. We derive a formula of the ground state degeneracy and an explicit ground-state basis of our model. We propose the notion of mobile and immobile charges on the boundary and find that they are quantum observables and label the ground-state basis. Our model is computation friendly.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2022)088