Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria

The root microbiota is critical for agricultural yield, with growth-promoting bacteria able to solubilise phosphate, produce plant growth hormones, antagonise pathogens and fix N 2 . Plants control the microorganisms in their immediate environment and this is at least in part through direct selectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-07, Vol.10 (1), p.3430-11, Article 3430
Hauptverfasser: Geddes, Barney A., Paramasivan, Ponraj, Joffrin, Amelie, Thompson, Amber L., Christensen, Kirsten, Jorrin, Beatriz, Brett, Paul, Conway, Stuart J., Oldroyd, Giles E. D., Poole, Philip S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The root microbiota is critical for agricultural yield, with growth-promoting bacteria able to solubilise phosphate, produce plant growth hormones, antagonise pathogens and fix N 2 . Plants control the microorganisms in their immediate environment and this is at least in part through direct selection, the immune system, and interactions with other microorganisms. Considering the importance of the root microbiota for crop yields it is attractive to artificially regulate this environment to optimise agricultural productivity. Towards this aim we express a synthetic pathway for the production of the rhizopine scyllo -inosamine in plants. We demonstrate the production of this bacterial derived signal in both Medicago truncatula and barley and show its perception by rhizosphere bacteria, containing bioluminescent and fluorescent biosensors. This study lays the groundwork for synthetic signalling networks between plants and bacteria, allowing the targeted regulation of bacterial gene expression in the rhizosphere for delivery of useful functions to plants. The root microbiota is critical for promoting crop yield. Here, the authors create a synthetic pathway for the production of the rhizopine scyllo -inosamine in Medicago truncatula and barley, and show its perception by rhizosphere bacteria for targeted regulation of bacterial gene expression.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10882-x