Spatiotemporal Analysis of NO2 Production Using TROPOMI Time-Series Images and Google Earth Engine in a Middle Eastern Country

Like many developing countries, Iran faces air pollution, especially in its metropolises and industrial cities. Nitrogen dioxide (NO2) is one of the significant air pollutants; therefore, this study aims to investigate the spatiotemporal variability of NO2 using Tropospheric Monitoring Instrument (T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (7), p.1725
Hauptverfasser: Rabiei-Dastjerdi, Hamidreza, Mohammadi, Shahin, Saber, Mohsen, Amini, Saeid, McArdle, Gavin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Like many developing countries, Iran faces air pollution, especially in its metropolises and industrial cities. Nitrogen dioxide (NO2) is one of the significant air pollutants; therefore, this study aims to investigate the spatiotemporal variability of NO2 using Tropospheric Monitoring Instrument (TROPOMI) sensor mounted on the Sentinel-5P (S5P) satellite and the Google Earth Engine (GEE) platform over Iran. In addition, we used ground truth data to assess the correlation between data acquired by this sensor and ground stations. The results show that there is a strong correlation between products of the TROPOMI sensor and data provided by the Air Quality Monitoring Organization of Iran. The results also display that the correlation coefficient (R) of NO2 between ground truth data and the TROPOMI sensor varies in the range of 0.4 to 0.92, over three years. Over an annual period (2018 to 2021) and wide area, these data can become valuable points of reference for NO2 monitoring. In addition, this study proved that the tropospheric NO2 concentrations are generally located over the northern part of Iran. According to the time and season, the concentration of the tropospheric NO2 column shows higher values during winter than in the summertime. The results show that a higher concentration of the tropospheric NO2 column is in winter while in some southern and central parts of the country more NO2 concentration can be seen in the summertime. This study indicates that these urban areas are highly polluted, which proves the impact of pollutants such as NO2 on the people living there. In other words, small parts of Iran are classified as high and very highly polluted areas, but these areas are the primary location of air pollution in Iran. We provide a code repository that allows spatiotemporal analysis of NO2 estimation using TROPOMI time-series images within GEE. This method can be applied to other regions of interest for NO2 mapping.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14071725