Potentiation of T Cell Function by a Marine Algae-Derived Sulfated Polymannuroguluronate: In Vitro Analysis of Novel Mechanisms
Marine algae-derived sulfated polymannuroguluronate (SPMG), a candidate drug for AIDS treatment, was intraperitoneally injected into normal mice for 6 weeks, and the in vivo and in vitro mechanisms of SPMG for immunomodulation were investigated in isolated lymphocytes by MTT assay, flow cytometry, a...
Gespeichert in:
Veröffentlicht in: | Journal of Pharmacological Sciences 2005, Vol.97(1), pp.107-115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marine algae-derived sulfated polymannuroguluronate (SPMG), a candidate drug for AIDS treatment, was intraperitoneally injected into normal mice for 6 weeks, and the in vivo and in vitro mechanisms of SPMG for immunomodulation were investigated in isolated lymphocytes by MTT assay, flow cytometry, and surface plasmon resonance assay. SPMG treatment at 5 and 10 mg/kg enhanced concanavalin A (ConA)-induced T cell proliferation, cellular levels of CD69, interleukin-2 (IL-2), and interferon-γ (IFN-γ), as well as CD4/CD8 ratio, while decreasing tumor necrosis factor-α (TNF-α) level in T cells of peripheral blood mononuclear cells. In addition, 1 molecule of SPMG bound to 2/3 molecules of IL-2 with a KD of 9.53 × 10-7 M. Heparin prevented SPMG binding to IL-2 by 72.2%; thus, to a large extent, SPMG and heparin share common binding sites on IL-2. In contrast, other glycosaminoglycans (e.g., chondroitin sulfate and dermatan sulfate) had little effect on SPMG and IL-2 interaction, suggesting the requirement of a defined sequence within the sugar chain for specific recognition of IL-2. Concomitant treatment of IL-2 and SPMG augmented lymphocyte proliferation, compared with IL-2 alone; in contrast, SPMG alone had no proliferative effect. Taken together, our findings demonstrated for the first time that SPMG exerted its immunomodulation by direct activation of T cell function, accompanied by simultaneous modulation of cytokine function, which suggests that SPMG would show great promise for use in anti-AIDS therapy. |
---|---|
ISSN: | 1347-8613 1347-8648 1347-8648 |
DOI: | 10.1254/jphs.fpj04026x |