Development of AI-Based Multisensory System for Monitoring Quay Wall Events

Structural monitoring of quay walls, where various events occur due to unexpected high waves, vessels, and heavy equipment, is essential. However, real-time events cannot be constantly monitored by on-site personnel. To resolve the aforementioned issues, this study proposes an innovative AI-powered,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2024-11, Vol.12 (11), p.1902
Hauptverfasser: Shin, Junsik, Park, Junyoung, Won, Jongbin, Park, Jongwoong, Min, Jiyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural monitoring of quay walls, where various events occur due to unexpected high waves, vessels, and heavy equipment, is essential. However, real-time events cannot be constantly monitored by on-site personnel. To resolve the aforementioned issues, this study proposes an innovative AI-powered, cloud-based wireless sensor system that incorporates a high-sensitivity accelerometer with an ultra-low noise level of 0.003 mg, designed to monitor the low response amplitude of massive quay walls. The sensor can be activated by a scheduled trigger or a long-rangefinder. Vessel detection is performed utilizing the AI-based object detection method, Faster R-CNN, which employs ResNet as the backbone network. The detected anchor box’s position and dimensions are subsequently processed to confirm the presence of a berthing vessel. The collected data are then transmitted wirelessly to a proposed cloud server through LTE communication in real-time. The developed system was installed on a caisson-type quay wall in Korea, where acceleration, tilt, temperature, and camera image data were analyzed to assess its performance for real-time event monitoring. The results demonstrated that the safety of quay walls can be automatically managed by monitoring events during berthing and mooring with the proposed system.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse12111902