SNR Prediction with ANN for UAV Applications in IoT Networks Based on Measurements

The 5G deployment brings forth the usage of Unmanned Aerial Vehicles (UAV) to assist wireless networks by providing improved signal coverage, acting as relays or base-stations. Another technology that could help achieve 5G massive machine-type communications (mMtc) goals is the Long Range Wide-Area...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (14), p.5233
Hauptverfasser: Cardoso, Caio M. M., Barros, Fabrício J. B., Carvalho, Joel A. R., Machado, Artur A., Cruz, Hugo A. O., de Alcântara Neto, Miércio C., Araújo, Jasmine P. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 5G deployment brings forth the usage of Unmanned Aerial Vehicles (UAV) to assist wireless networks by providing improved signal coverage, acting as relays or base-stations. Another technology that could help achieve 5G massive machine-type communications (mMtc) goals is the Long Range Wide-Area Network (LoRaWAN) communication protocol. This paper studied these complementary technologies, LoRa and UAV, through measurement campaigns in suburban, densely forested environments. Downlink and uplink communication at different heights and spreading factors (SF) demonstrate distinct behavior through our analysis. Moreover, a neural network was trained to predict the measured signal-to-noise ratio (SNR) behavior and results compared with SNR regression models. For the downlink scenario, the neural network results show a root mean square error (RMSE) variation between 1.2322–1.6623 dB, with an error standard deviation (SD) less than 1.6730 dB. For the uplink, the RMSE variation was between 0.8714–1.3891 dB, with an error SD less than 1.1706 dB.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22145233