Fixed-Time Synchronization of Complex-Valued Coupled Networks with Hybrid Perturbations via Quantized Control

This paper considers the fixed-time synchronization of complex-valued coupled networks (CVCNs) with hybrid perturbations (nonlinear bounded external perturbations and stochastic perturbations). To accomplish the target of fixed-time synchronization, the CVCNs can be separated into their real and ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-09, Vol.11 (18), p.3845
Hauptverfasser: Wu, Enli, Wang, Yao, Li, Yundong, Li, Kelin, Luo, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the fixed-time synchronization of complex-valued coupled networks (CVCNs) with hybrid perturbations (nonlinear bounded external perturbations and stochastic perturbations). To accomplish the target of fixed-time synchronization, the CVCNs can be separated into their real and imaginary parts and establish real-valued subsystems, a novel quantized controller is designed to overcome the difficulties induced by complex parameters, variables, and disturbances. By means of the Lyapunov stability theorem and the properties of the Wiener process, some sufficient conditions are presented for the selection of control parameters to guarantee the fixed-time synchronization, and an upper bound of the setting time is also obtained, which is only related to parameters of both systems and the controller, not to the initial conditions of the systems. Finally, a numerical simulation is given to show the correctness of theoretical results and the effectiveness of the control strategy.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11183845