Embedded FBG Sensor Based Impact Identification of CFRP Using Ensemble Learning

Impact brings great threat to the composite structures that are extensively used in an aircraft. Therefore, it is necessary to develop an accurate and reliable impact monitoring method. In this paper, fiber Bragg grating (FBG) sensors are embedded in unidirectional carbon fiber reinforced plastics (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-02, Vol.21 (4), p.1452
Hauptverfasser: Li, Jun, Yu, Yinghong, Qing, Xinlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Impact brings great threat to the composite structures that are extensively used in an aircraft. Therefore, it is necessary to develop an accurate and reliable impact monitoring method. In this paper, fiber Bragg grating (FBG) sensors are embedded in unidirectional carbon fiber reinforced plastics (CFRPs) during the manufacturing process to monitor the strain that is related to the elastic modulus and the state of resin. After that, an advanced impact identification model is proposed. Support vector regression (SVR) and a back propagation (BP) neural network are combined appropriately in this stacking-based ensemble learning model. Then, the model is trained and tested through hundreds of impacts, and the corresponding strain responses are recorded by the embedded FBG sensors. Finally, the performances of different models are compared, and the influence of the time of arrival (ToA) on the neural network is also explored. The results show that compared with a single neural network, ensemble learning has a better capability in impact identification.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21041452