LOS Deformation Correction Method for DInSAR in Mining Areas by Fusing Ground Data without Control Points
The traditional leveling, total station, and global navigation satellite system (GNSS) and the new differential interferometric synthetic aperture radar (DInSAR) and terrestrial laser scanning (TLS) systems have their own advantages and limitations in the deformation monitoring of mining areas. It i...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-10, Vol.15 (19), p.4862 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The traditional leveling, total station, and global navigation satellite system (GNSS) and the new differential interferometric synthetic aperture radar (DInSAR) and terrestrial laser scanning (TLS) systems have their own advantages and limitations in the deformation monitoring of mining areas. It is difficult to obtain accurate deformation information only using single-source measurement data. In this study, we propose an LOS deformation correction method for DInSAR in mining areas by fusing ground data without control points. Based on free space data, small deformations at the edges of mining influence areas accurately obtained using DInSAR. By combining leveling/GNSS and TLS methods, it was possible to obtain large deformations in central areas without the need for control points located outside the mining influence range. For overcoming the non-uniform coordinates of the “space–ground” data and the limited overlap of the effective measurement ranges, the subsidence prediction model was employed to assist in its fusion. In addition, in LOS deformation correction, we retained the non-full cycle phase of DInSAR and replaced the full cycle phase with the one from the data fusion. Engineering experiments have shown that the correction results preserve the differences in the LOS deformations at the edge areas of the mine influence range, and they recover the lost LOS deformations at the center areas. Using the difference in the LOS deformation before and after correction as the verification indicator, the maximum absolute value of the errors after correction was 143 mm, which was approximately 6.4% of the maximum LOS deformation. In addition, there were still two errors that were large (−112 mm and −89 mm, respectively), and the absolute values of errors were not more than 75 mm. For all errors, the mean absolute value was 36 mm. Compared with 399 mm before correction, the error was reduced by 91%. This study provides technical support and theoretical reference for deformation monitoring and control in mining areas. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15194862 |