Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy

The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-06, Vol.11 (1), p.2945-2945, Article 2945
Hauptverfasser: Ruggeri, Francesco Simone, Mannini, Benedetta, Schmid, Roman, Vendruscolo, Michele, Knowles, Tuomas P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10–20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems. While infrared nanospectroscopy methods based on thermomechanical detection (AFM-IR) enables the acquisition of absorption spectra at the nanoscale, single molecule detection has not been possible so far. Here, the authors present off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR), which allows measuring infrared absorption spectra at the single molecule level in a time scale of seconds with high throughput and demonstrate that the secondary structure of single protein molecules can be determined with this method.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16728-1