Scanning electron microscopy datasets for local fibre volume fraction determination in non-crimp glass-fibre reinforced composites

The fatigue damage evolution depends on the local fibre volume fraction as observed in the co-submitted publication [1]. Conventionally, fibre volume fractions are determined as an averaged overall fibre volume fraction determined from small cuts of the laminate. Alternatively, automatically stitchi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data in brief 2021-04, Vol.35, p.106868-106868, Article 106868
Hauptverfasser: Mikkelsen, Lars P., Fæster, Søren, Goutianos, Stergios, Sørensen, Bent F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fatigue damage evolution depends on the local fibre volume fraction as observed in the co-submitted publication [1]. Conventionally, fibre volume fractions are determined as an averaged overall fibre volume fraction determined from small cuts of the laminate. Alternatively, automatically stitching of scanning electron microscopy (SEM) images can make high-resolution scans of large cross-section area with large contrast between the polymer and glass-fibre phase. Therefore, local distribution of the fibre volume fraction can be characterised automatically using such scan-data. The two datasets presented here cover two large Field of Views scanning electron microscopy (SEM) images. The two images is generated from between 1200 and 1800 high-resolution scan pictures which have been stitched into two high-resolution tif-files. The resolution corresponds to between 700 and 5000 pixels covering each fibre. The datasets are coming from two different non-crimp fabric glass fibre reinforced epoxy composites typically used in the wind turbine industry. Depending on the regions analysed, fibre volume fraction in the range of 50–85% is found. The maximum local fibre volume fraction is found averaging the local fibre volume fraction over 5 × 5 fibre diameter (80 × 80 µm2) areas. The local fibre volume fraction has been used in the analysis performed in [1].
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2021.106868