Deep Learning Techniques for Speech Emotion Recognition, from Databases to Models
The advancements in neural networks and the on-demand need for accurate and near real-time Speech Emotion Recognition (SER) in human-computer interactions make it mandatory to compare available methods and databases in SER to achieve feasible solutions and a firmer understanding of this open-ended p...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-02, Vol.21 (4), p.1249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advancements in neural networks and the on-demand need for accurate and near real-time Speech Emotion Recognition (SER) in human-computer interactions make it mandatory to compare available methods and databases in SER to achieve feasible solutions and a firmer understanding of this open-ended problem. The current study reviews deep learning approaches for SER with available datasets, followed by conventional machine learning techniques for speech emotion recognition. Ultimately, we present a multi-aspect comparison between practical neural network approaches in speech emotion recognition. The goal of this study is to provide a survey of the field of discrete speech emotion recognition. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21041249 |