A laboratory experiment of intact polar lipid degradation in sandy sediments

Intact polar lipids (IPLs) are considered biomarkers for living biomass. Their degradation in marine sediments, however, is poorly understood and complicates interpretation of their occurrence in geological samples. To investigate the turnover of IPLs, a degradation experiment with anoxic sandy sedi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences 2011-01, Vol.8 (9), p.2547-2560
Hauptverfasser: Logemann, J., Graue, J., Köster, J., Engelen, B., Rullkötter, J., Cypionka, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intact polar lipids (IPLs) are considered biomarkers for living biomass. Their degradation in marine sediments, however, is poorly understood and complicates interpretation of their occurrence in geological samples. To investigate the turnover of IPLs, a degradation experiment with anoxic sandy sediments from the North Sea was conducted. Intact cells of two organisms that do not naturally occur in North Sea sediments were chosen as IPL sources: (i) Saccharomyces cerevisiae, representative for ester-bound acyl lipids that also occur in Bacteria, and (ii) the archaeon Haloferax volcanii, representative for ether-bound isoprenoid lipids. Surprisingly, IPLs with phosphoester-bound head groups showed approximately the same degradation rate as IPLs with glycosidic head groups. Furthermore, the results indicate a relatively fast degradation of S. cerevisiae IPLs with ester-bound moieties (analogs of bacterial membrane lipids) and no significant degradation of archaeal IPLs with ether-bound moieties. Pore water and 16S rRNA-based DGGE analysis showed only a minor influence of the IPL source on microbial metabolism and community profiles. Due to our results, the IPL-based quantification of Archaea and Bacteria should be interpreted with caution.
ISSN:1726-4189
1726-4170
1726-4189
DOI:10.5194/bg-8-2547-2011