Analysis of Amyloid Fibrillation of Two Family 1 Glycoside Hydrolases
The formation and analysis of amyloid fibers by two β-glucosidases, BglA and BglB, belonging to the GH1 enzyme family, are reported. Both proteins have the (β/α) TIM-barrel fold, which is characteristic of this family and is also the most common protein structure. BglA is an octamer, whereas BglB is...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-08, Vol.25 (15), p.8536 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formation and analysis of amyloid fibers by two β-glucosidases, BglA and BglB, belonging to the GH1 enzyme family, are reported. Both proteins have the (β/α)
TIM-barrel fold, which is characteristic of this family and is also the most common protein structure. BglA is an octamer, whereas BglB is a monomer. Amyloid fibrillation using pH and temperature as perturbing agents was investigated using fluorescence spectroscopy as a preliminary approach and corroborated using wide-field optical microscopy, confocal microscopy, and field-emission scanning electron microscopy. These analyses showed that both enzymes fibrillate at a wide range of acidic and alkaline conditions and at several temperature conditions, particularly at acidic pH (3-4) and at temperatures between 45 and 65 °C. Circular dichroism spectroscopy corroborated the transition from an α-helix to a β-sheet secondary structure of both proteins in conditions where fibrillation was observed. Overall, our results suggest that fibrillation is a rather common phenomenon caused by protein misfolding, driven by a transition from an α-helix to a β-sheet secondary structure, that many proteins can undergo if subjected to conditions that disturb their native conformation. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25158536 |