Stormwater runoff pollution control performance of permeable concrete pavement and constructed wetland combined system: toward on-site reuse
Urban waterlogging and the deterioration of receiving water quality caused by stormwater runoff have become increasingly significant problems. Based on the concept of combining grey and green infrastructure, a combined permeable concrete pavement (PCP) and constructed wetland (CW) system has been de...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2023-09, Vol.88 (6), p.1345-1357 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Urban waterlogging and the deterioration of receiving water quality caused by stormwater runoff have become increasingly significant problems. Based on the concept of combining grey and green infrastructure, a combined permeable concrete pavement (PCP) and constructed wetland (CW) system has been developed to treat stormwater runoff and enable on-site reuse. The results showed that the removal rate of suspended solids (SS) by PCP ranged from 96.61 to 99.20%; however, the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in the effluent did not meet the standards required for rainwater reuse. For the combined PCP-CW system, the removal rates of COD, TN and TP by the CW were 48.45–75.12%, 47.26–53.05%, and 59.04–75.28%, respectively, under different hydraulic loading (HL) rates; thus, the effluent TN concentrations did not consistently meet the reuse standards. Further optimization of aeration in different parts of the CW revealed that aeration in the middle and front sections of the wetland had the most significant effect on pollutant removal, under which the TN concentrations in the effluent met the standard required for reuse. The effluent from the combined PCP-CW system was able to fully meet the stormwater reuse standards under these optimized conditions, and the reuse of urban stormwater runoff can therefore be realized. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2023.273 |