Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways
Neurodegenerative disorders affect fifteen percent of the world's population and pose a significant financial burden to all nations. Cognitive impairment is the seventh leading cause of death throughout the globe. Given the enormous challenges to treat cognitive disorders, such as Alzheimer...
Gespeichert in:
Veröffentlicht in: | Biomolecules (Basel, Switzerland) Switzerland), 2021-07, Vol.11 (7), p.1002 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurodegenerative disorders affect fifteen percent of the world's population and pose a significant financial burden to all nations. Cognitive impairment is the seventh leading cause of death throughout the globe. Given the enormous challenges to treat cognitive disorders, such as Alzheimer's disease, and the inability to markedly limit disease progression, circadian clock gene pathways offer an exciting strategy to address cognitive loss. Alterations in circadian clock genes can result in age-related motor deficits, affect treatment regimens with neurodegenerative disorders, and lead to the onset and progression of dementia. Interestingly, circadian pathways hold an intricate relationship with autophagy, the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1
) (SIRT1), mammalian forkhead transcription factors (FoxOs), and the trophic factor erythropoietin. Autophagy induction is necessary to maintain circadian rhythm homeostasis and limit cortical neurodegenerative disease, but requires a fine balance in biological activity to foster proper circadian clock gene regulation that is intimately dependent upon mTOR, SIRT1, FoxOs, and growth factor expression. Circadian rhythm mechanisms offer innovative prospects for the development of new avenues to comprehend the underlying mechanisms of cognitive loss and forge ahead with new therapeutics for dementia that can offer effective clinical treatments. |
---|---|
ISSN: | 2218-273X 2218-273X |
DOI: | 10.3390/biom11071002 |