Adaptive control for uncrewed aerial vehicles based on communication information optimization in complex environments

The utilization of drone technology thrives in diverse domains, including aviation, military operations, and logistics. The pervasive adoption of this technology aims to enhance efficiency while mitigating hazards and expenditures. In complex contexts, the governing parameters of uncrewed aerial veh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science 2024-04, Vol.10, p.e1920-e1920, Article e1920
Hauptverfasser: Wang, Zirong, Han, Zhengyu, Tayyaba, Shahzadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The utilization of drone technology thrives in diverse domains, including aviation, military operations, and logistics. The pervasive adoption of this technology aims to enhance efficiency while mitigating hazards and expenditures. In complex contexts, the governing parameters of uncrewed aerial vehicles (UAV) require real-time adjustments for flight safety and efficacy. To improve the attitude estimation accuracy, this article introduces a ATT-Bi-LSTM framework for optimizing UAVs through adaptive parameter control, which integrates the state information gleaned from communication signals. The ATT-Bi-LSTM achieves data feature extraction by means of a two-layer Bidirectional Long Short-Term Memory (BI-LSTM) at its inception to enhance the feature. Subsequently, it harnesses the attention mechanism to amplify the LSTM network's output, thereby enabling the optimal control of UAV positioning. During the empirical phase, we employ optical system data for the comparative validation of the model. The outcomes underscore the commendable performance of the proposed framework in this study, particularly with regard to the three pivotal position indicators: yaw, pitch, and roll. In the comparison of indicators such as RMSR and MAE, the proposed model has the lowest error, which provides algorithm support and important reference for future UAV optimization control research.
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.1920