A Note on the Generalized Relativistic Diffusion Equation

We study here a generalization of the time-fractional relativistic diffusion equation based on the application of Caputo fractional derivatives of a function with respect to another function. We find the Fourier transform of the fundamental solution and discuss the probabilistic meaning of the resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2019-11, Vol.7 (11), p.1009
Hauptverfasser: Beghin, Luisa, Garra, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study here a generalization of the time-fractional relativistic diffusion equation based on the application of Caputo fractional derivatives of a function with respect to another function. We find the Fourier transform of the fundamental solution and discuss the probabilistic meaning of the results obtained in relation to the time-scaled fractional relativistic stable process. We briefly consider also the application of fractional derivatives of a function with respect to another function in order to generalize fractional Riesz-Bessel equations, suggesting their stochastic meaning.
ISSN:2227-7390
2227-7390
DOI:10.3390/math7111009