Cathodoluminescence differentiates sedimentary organic matter types

High-resolution scanning electron microscopy (SEM) visualization of sedimentary organic matter is widely utilized in the geosciences for evaluating microscale rock properties relevant to depositional environment, diagenesis, and the processes of fluid generation, transport, and storage. However, des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-03, Vol.14 (1), p.5969-5969, Article 5969
Hauptverfasser: Hackley, Paul C., McAleer, Ryan J., Jubb, Aaron M., Valentine, Brett J., Birdwell, Justin E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-resolution scanning electron microscopy (SEM) visualization of sedimentary organic matter is widely utilized in the geosciences for evaluating microscale rock properties relevant to depositional environment, diagenesis, and the processes of fluid generation, transport, and storage. However, despite thousands of studies which have incorporated SEM methods, the inability of SEM to differentiate sedimentary organic matter types has hampered the pace of scientific advancement. In this study, we show that SEM-cathodoluminescence (CL) properties can be used to identify and characterize sedimentary organic matter at low thermal maturity conditions. Eleven varied mudstone samples with a broad array of sedimentary organic matter types, ranging from the Paleoproterozoic to Eocene in age, were investigated. Sedimentary organic matter fluorescence intensity and CL intensity showed an almost one-to-one correspondence, with certain exceptions in three samples potentially related to radiolytic alteration. Therefore, because CL emission can be used as a proxy for fluorescence emission from sedimentary organic matter, CL emission during SEM visualization can be used to differentiate fluorescent from non-fluorescent sedimentary organic matter. This result will allow CL to be used as a visual means to quickly differentiate sedimentary organic matter types without employing correlative optical microscopy and could be widely and rapidly adapted for SEM-based studies in the geosciences.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-53168-z