Low-Rank Matrix Completion via QR-Based Retraction on Manifolds
Low-rank matrix completion aims to recover an unknown matrix from a subset of observed entries. In this paper, we solve the problem via optimization of the matrix manifold. Specially, we apply QR factorization to retraction during optimization. We devise two fast algorithms based on steepest gradien...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-03, Vol.11 (5), p.1155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-rank matrix completion aims to recover an unknown matrix from a subset of observed entries. In this paper, we solve the problem via optimization of the matrix manifold. Specially, we apply QR factorization to retraction during optimization. We devise two fast algorithms based on steepest gradient descent and conjugate gradient descent, and demonstrate their superiority over the promising baseline with the ratio of at least 24%. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11051155 |