Exact solutions to the Erdős-Rothschild problem

Let $\boldsymbol {k} := (k_1,\ldots ,k_s)$ be a sequence of natural numbers. For a graph G, let $F(G;\boldsymbol {k})$ denote the number of colourings of the edges of G with colours $1,\dots ,s$ such that, for every $c \in \{1,\dots ,s\}$ , the edges of colour c contain no clique of order $k_c$ . Wr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2024-01, Vol.12, Article e8
Hauptverfasser: Pikhurko, Oleg, Staden, Katherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\boldsymbol {k} := (k_1,\ldots ,k_s)$ be a sequence of natural numbers. For a graph G, let $F(G;\boldsymbol {k})$ denote the number of colourings of the edges of G with colours $1,\dots ,s$ such that, for every $c \in \{1,\dots ,s\}$ , the edges of colour c contain no clique of order $k_c$ . Write $F(n;\boldsymbol {k})$ to denote the maximum of $F(G;\boldsymbol {k})$ over all graphs G on n vertices. There are currently very few known exact (or asymptotic) results for this problem, posed by Erdős and Rothschild in 1974. We prove some new exact results for $n \to \infty $ : (i) A sufficient condition on $\boldsymbol {k}$ which guarantees that every extremal graph is a complete multipartite graph, which systematically recovers all existing exact results. (ii) Addressing the original question of Erdős and Rothschild, in the case $\boldsymbol {k}=(3,\ldots ,3)$ of length $7$ , the unique extremal graph is the complete balanced $8$ -partite graph, with colourings coming from Hadamard matrices of order $8$ . (iii) In the case $\boldsymbol {k}=(k+1,k)$ , for which the sufficient condition in (i) does not hold, for $3 \leq k \leq 10$ , the unique extremal graph is complete k-partite with one part of size less than k and the other parts as equal in size as possible.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2023.117