Dose-Dependent Expression of Neuronal Injury Markers during Experimental Osteoarthritis Induced by Monoiodoacetate in the Rat
Background: It was recently reported that the mono-iodoacetate (MIA) experimental model of osteoarthritis (OA) courses with changes of neurons innervating the affected joints that are commonly interpreted as a neuronal response to axonal injury. To better characterize these changes, we evaluated the...
Gespeichert in:
Veröffentlicht in: | Molecular pain 2012-07, Vol.8 (1), p.50-50 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
It was recently reported that the mono-iodoacetate (MIA) experimental model of osteoarthritis (OA) courses with changes of neurons innervating the affected joints that are commonly interpreted as a neuronal response to axonal injury. To better characterize these changes, we evaluated the expression of two markers of neuronal damage, ATF-3 and NPY, and the growth associated protein GAP-43, in primary afferent neurons of OA animals injected with three different doses of MIA (0.3, 1 or 2 mg). Measurements were performed at days 3, 7, 14, 21 and 31 post-MIA injection.
Results:
OA animals showed the characteristic histopathological changes of the joints and the accompanying nociceptive behaviour, evaluated by the Knee-Bed and CatWalk tests. An increase of ATF-3 expression was detected in the DRG of OA animals as early as 3 days after the injection of 1 or 2 mg of MIA and 7 days after the injection of 0.3 mg. NPY expression was increased in animals injected with 1 or 2 mg of MIA, at day 3 or in all time-points, respectively. From day 7 onwards there was a massive increase of GAP-43 expression in ATF-3 cells.
Conclusions:
The expression of the neuronal injury markers ATF-3 and NPY as well as an up-regulation of GAP-43 expression, indicative of peripheral fibre regeneration, suggests that axonal injury and a regeneration response may be happening in this model of OA. This opens new perspectives in the unravelling of the physiopathology of the human disease. |
---|---|
ISSN: | 1744-8069 1744-8069 |
DOI: | 10.1186/1744-8069-8-50 |