Chiral three-nucleon force and continuum for dripline nuclei and beyond

Three-nucleon force and continuum play important roles in reproducing the properties of atomic nuclei around driplines. Therefore it is valuable to build up a theoretical framework where both effects can be taken into account to solve the nuclear Schrödinger equation. To this end, in this letter, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2020-03, Vol.802 (C), p.135257, Article 135257
Hauptverfasser: Ma, Y.Z., Xu, F.R., Coraggio, L., Hu, B.S., Li, J.G., Fukui, T., De Angelis, L., Itaco, N., Gargano, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-nucleon force and continuum play important roles in reproducing the properties of atomic nuclei around driplines. Therefore it is valuable to build up a theoretical framework where both effects can be taken into account to solve the nuclear Schrödinger equation. To this end, in this letter, we have expressed the chiral three-nucleon force within the continuum Berggren representation, so that bound, resonant and continuum states can be treated on an equal footing in the complex-momentum space. To reduce the model dimension and computational cost, the three-nucleon force is truncated at the normal-ordered two-body level and limited in the sd-shell model space, with the residual three-body term being neglected. We choose neutron-rich oxygen isotopes as the test ground because they have been well studied experimentally, with the neutron dripline determined. The calculations have been carried out within the Gamow shell model. The quality of our results in reproducing the properties of oxygen isotopes around the neutron dripline shows the relevance of the interplay between three-nucleon force and the coupling to continuum states. We also analyze the role played by the chiral three-nucleon force, by dissecting the contributions of the 2π exchange, 1π exchange and contact terms.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2020.135257