Dynamic Analysis of a Long Run-Out Rockslide Considering Dynamic Fragmentation Behavior in Jichang Town: Insights from the Three-Dimensional Coupled Finite-Discrete Element Method
To clearly realize the dynamic process as well as the dynamic fragmentation behavior of a long run-out rockslide, a novel numerical method for landslide simulation of the coupled finite-discrete element method (FDEM) was applied and the Jichang rockslide was used as a case. The calibrated simulation...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-12, Vol.15 (24), p.5708 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To clearly realize the dynamic process as well as the dynamic fragmentation behavior of a long run-out rockslide, a novel numerical method for landslide simulation of the coupled finite-discrete element method (FDEM) was applied and the Jichang rockslide was used as a case. The calibrated simulation result of the FDEM in a rockslide deposit corresponds well with the real rockslide deposit. The main run-out process of the rockslide lasts for 75 s and can be divided into acceleration and deceleration stages, which last for 33 s and 42 s, respectively. The maximum overall rockslide movement speed is 35 m/s while the partial sliding mass reaches 45 m/s. The fracturing, fragmentation, and disintegration processes of the sliding mass can be clearly observed from the dynamic scenarios. Fracture energy generated by rock fracturing constantly increases with time in a non-linear form. Of the total fracture energy, 54% is released in the initial 5 s because of fracturing, and 39% of the total fracture energy is released because of fragmentation and disintegration in the last 35 s. The accumulated friction energy increases in the whole run-out process, and its magnitude is much greater than the kinetic energy and fracture energy of the sliding mass. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15245708 |