Design, Development and Immunogenicity Study of a Multi-Epitope Vaccine Prototype Against SARS-CoV-2
SARS-CoV-2 caused the COVID-19 pandemic, which overwhelmed global healthcare systems. Over 776 million COVID-19 cases and more than 7 million deaths were reported by WHO in September 2024. COVID-19 vaccination is crucial for preventing infection and controlling the pandemic. Here, we describe the de...
Gespeichert in:
Veröffentlicht in: | Pharmaceuticals (Basel, Switzerland) Switzerland), 2024-11, Vol.17 (11), p.1498 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SARS-CoV-2 caused the COVID-19 pandemic, which overwhelmed global healthcare systems. Over 776 million COVID-19 cases and more than 7 million deaths were reported by WHO in September 2024. COVID-19 vaccination is crucial for preventing infection and controlling the pandemic. Here, we describe the design and development of a next-generation multi-epitope vaccine for SARS-CoV-2, consisting of T cell epitopes.
Immunoinformatic methods were used to derive models for the selection of MHC binders specific for the mouse strain used in this study among a set of human SARS-CoV-2 T cell epitopes identified in convalescent patients with COVID-19. The immunogenicity of the vaccine prototype was tested on humanized-ACE2 transgenic B6.Cg-Tg(K18-ACE2)2Prlmn/J mice by in vitro, in vivo, and ex vivo immunoassays.
Eleven binders (two from the Envelope (E) protein; two from the Membrane (M) protein; three from the Spike (S) protein; and four from the Nucleocapsid (N) protein) were synthesized and included in a multi-epitope vaccine prototype. The animals were immunized with a mix of predicted MHC-I, MHC-II, or MHC-I/MHC-II peptide epitopes in Complete Freund's Adjuvant, and boosted with peptides in Incomplete Freund's Adjuvant. Immunization with SARS-CoV-2 epitopes remodeled the lymphocyte profile. A weak humoral response and the significant production of IL-4 and IFN-γ from T cells were found after the vaccination of the animals.
The multi-epitope vaccine prototype presented in this study demonstrates immunogenicity in mice and shows potential for human vaccine construction. |
---|---|
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph17111498 |