Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?
This review explores the question: should the world rely wholly or partially on solar geoengineering (SG) to mitigate climate change (CC), or on renewable energy, together with deep energy reductions? Recent thinking is for SG to only supplement more conventional climate change mitigation methods. H...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-10, Vol.15 (19), p.7315 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This review explores the question: should the world rely wholly or partially on solar geoengineering (SG) to mitigate climate change (CC), or on renewable energy, together with deep energy reductions? Recent thinking is for SG to only supplement more conventional climate change mitigation methods. However, we first show that conventional mitigation methods are not working., given that global annual CO2 emissions are still rising, so it is far more likely that SG will be called upon to counter most anthropogenic CC, as early research proposed. The paper next examines the various SG proposals that have been considered and their objectives. Future choices could be between an increasingly unpredictable climate, and SG, with its own risks and unknowns, or deep energy reductions and RE. The claim is that SG has far lower costs for a given climate forcing reduction compared with more conventional methods, and equally important, could be quickly implemented, producing temperature reductions in a year or so, compared with decades needed for more conventional mitigation approaches. SG implementation would affect not only the technical potential for key RE sources but also the actual uptake of RE and energy reductions. However, a fair comparison of RE and SG must recognise that the SG option also requires a solution to rising ocean acidification (OA). Because the material quantities needed annually to counter OA are orders of magnitude larger than for SG, its costs and energetic requirements will also be far higher, as will the time for implementation. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15197315 |