Dietary metabolizable energy and crude protein levels affect pectoral muscle composition and gut microbiota in native growing chickens
The experiment aimed to study effects of dietary metabolizable energy (ME) and crude protein (CP) levels alone and in interaction on performance, pectoral muscle composition and gut microbiota in native growing chickens. A total of 648 10-wks-old Beijing-You Chicken (BYC) female chickens were random...
Gespeichert in:
Veröffentlicht in: | Poultry science 2023-02, Vol.102 (2), p.102353-102353, Article 102353 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The experiment aimed to study effects of dietary metabolizable energy (ME) and crude protein (CP) levels alone and in interaction on performance, pectoral muscle composition and gut microbiota in native growing chickens. A total of 648 10-wks-old Beijing-You Chicken (BYC) female chickens were randomly allocated to 9 groups with 6 replicates per group and 12 chickens per replicate, and the chickens were fed with a 3 × 3 factorial diets (3 levels of dietary ME: 11.31 MJ/kg, 11.51 MJ/kg, 11.71 MJ/kg; and 3 levels of dietary CP: 14%, 15%, 16%). The results showed that dietary ME and CP levels didn't affect average feed intake (AFI), body weight gain, feed gain ratio (P > 0.05), but ME level significantly affected the AFI (P < 0.05); mortality rate of 11.31 MJ/kg group was the highest (P < 0.05). Dietary ME, CP levels, and the interaction significantly affected pectoral CP and crude fat (CF) content of the growing chickens (P < 0.01). Dietary CP level had opposite effects on pectoral CP and CF content (P < 0.01). The 16% CP increased the pectoral CF content, which may have a negative impact on meat flavor. Dietary ME level affected 11 types of pectoral free amino acids (FAA) contents, including aspartic acid, L-threonine (P < 0.05), also amino acid classification, for example, total amino acid (TAA) and essential amino acid (EAA) content (P < 0.05). The 11.51 MJ/kg group had the highest TAA, EAA, delicious amino acid (DAA) content and EAA percentage (P < 0.05), while 11.31 MJ/kg group had the lowest bitter amino acid (BAA) content and BAA percentage and the highest fresh and sweet amino acid (FSAA) percentage (P < 0.05). Dietary CP level significantly affected glutamine and tyrosine content (P < 0.05). The interaction of dietary ME and CP level affected C20:3n6 content, saturated fatty acid (SFA), and unsaturated fatty acid (UFA) percentage (P < 0.05). The CP level significantly affected SFA percentage (P < 0.05). The 16% CP level increased the diversity of gut microbiota, but at the same time increased the relative abundance of Proteobacteria (P < 0.05), which is a sign of microbiota disorder. The increase of dietary ME level resulted in a gradual decrease in the diversity and relative abundance of gut microbiota. In conclusion, the present study suggested that the medium dietary ME (11.51 MJ/kg) and low CP (14–15%) levels can be helpful for enhancing pectoral muscle composition, increase meat quality such as flavor and nutritional value, and benefit for gut m |
---|---|
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.1016/j.psj.2022.102353 |