Effects of calcareous marine algae on milk production, feed intake, energy balance, mineral status, and inflammatory markers in transition dairy cows

The objective of this experiment was to compare the effects of calcareous marine algae (CMA; Acid Buf, Celtic Sea Minerals) with a limestone-based control on feed intake, milk production, energy balance, serum mineral metabolites, and inflammatory markers in transition dairy cows. Twenty-two multipa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2022-08, Vol.105 (8), p.6616-6627
Hauptverfasser: Neville, E.W., Fahey, A.G., Meade, K.G., Mulligan, F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this experiment was to compare the effects of calcareous marine algae (CMA; Acid Buf, Celtic Sea Minerals) with a limestone-based control on feed intake, milk production, energy balance, serum mineral metabolites, and inflammatory markers in transition dairy cows. Twenty-two multiparous and 10 primiparous cows were assigned to 2 treatments from 25 d before expected parturition until 42 d postpartum. Cows were assigned to treatment according to a randomized complete block design based on parity, pre-experimental body condition score, previous 305-d milk yield, and either fat + protein yield (for multiparous cows) or predicted transmitting ability for milk yield and fat + protein yield (for primiparous cows). Cows were fed a negative dietary cation-anion difference [−50 mEq/kg] total mixed ration (TMR) based on corn silage, grass silage, and straw during the prepartum period and a 50:50 forage:concentrate TMR based on grass silage, corn silage, and concentrate during the postpartum period. The 2 dietary treatments consisted of a control (CON), which contained limestone as the primary calcium source, and CMA, in which limestone was replaced by CMA at 0.42% and 0.47% of dry matter for the pre- and postpartum periods, respectively. The dietary treatments were fed as 2 different concentrate pellets added to the TMR. Cows fed the CMA diet had higher dry matter intake in both the prepartum (+1.08 kg) and postpartum (+0.94 kg) periods compared with cows fed the CON diet. Fat yield (+0.11 kg), fat concentration (+0.43%), and 4% fat-corrected milk (+1.56 kg) were higher in cows fed CMA than in cows fed CON. The concentration of plasma serum amyloid A was reduced and that of serum P was increased on the CMA treatment compared with the CON treatment. These findings demonstrate the benefits of supplementing CMA to dairy cows during the transition period compared with a CON treatment containing limestone as the primary Ca source.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2021-21443