Resonance Fluorescence of a Chiral Artificial Atom

We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide. Our artificial atom is realized by coupling a transmon qubit to the waveguide at two spatially separated points with time-modulated interactions. Direction-sensitive interference a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2023-06, Vol.13 (2), p.021039, Article 021039
Hauptverfasser: Joshi, Chaitali, Yang, Frank, Mirhosseini, Mohammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide. Our artificial atom is realized by coupling a transmon qubit to the waveguide at two spatially separated points with time-modulated interactions. Direction-sensitive interference arising from the parametric couplings in our scheme results in a nonreciprocal response, where we measure a forward/backward ratio of spontaneous emission exceeding 100. We verify the quantum nonlinear behavior of this artificial chiral atom by measuring the resonance fluorescence spectrum under a strong resonant drive and observing well-resolved Mollow triplets. Further, we demonstrate chirality for the second transition energy of the artificial atom and control it with a pulse sequence to realize a qubit-state-dependent nonreciprocal phase on itinerant photons. Our demonstration puts forth a superconducting hardware platform for the scalable realization of several key functionalities pursued within the paradigm of chiral quantum optics, including quantum networks with all-to-all connectivity, driven-dissipative stabilization of many-body entanglement, and the generation of complex nonclassical states of light.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.13.021039