Deformation behaviors and the related high-temperature mechanical properties of Mg–11Gd–5Y–2Zn–0.7Zr via regulating extrusion temperatures
The effects of extrusion temperatures (430, 450, 470 and 490 °C) on the microstructures and mechanical properties of Mg–11Gd–5Y–2Zn–0.7Zr (GW) alloys at room temperature (RT), 250, 300, 350 °C were systematically investigated. The dynamic precipitation of blocky and lamellar long period stacking ord...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2023-09, Vol.26, p.703-719 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of extrusion temperatures (430, 450, 470 and 490 °C) on the microstructures and mechanical properties of Mg–11Gd–5Y–2Zn–0.7Zr (GW) alloys at room temperature (RT), 250, 300, 350 °C were systematically investigated. The dynamic precipitation of blocky and lamellar long period stacking ordered (LPSO) phases was taken place during hot extrusion. The dominant texture changed from //ED to //ED with increasing extrusion temperature. Tensile results indicated that the GW alloy extruded at 430 °C (GW430) exhibited the highest mechanical properties at both RT and elevated temperatures, which was ascribed to the fine dynamic recrystallized (DRXed) grains, un-DRXed grains with an orientation of //ED, and the LPSO phase strengthening. When tensile tested below 300 °C, slips on the blocky LPSO phase and kinks of lamellar LPSO phase were the primary deformation modes, followed by grain boundary crack. At 350 °C, grain boundaries became the vulnerable sites to be activated. For GW alloys extruded at 450, 470 and 490 °C, an abnormal increase of mechanical properties was observed at 300 °C. This was due to the occurrence of multiple-slip, which showed the intersection and entanglement of dislocations and thus improving the strength of Mg matrix. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2023.07.213 |