An Approach of Quantifying Gear Fatigue Life for Wind Turbine Gearboxes Using Supervisory Control and Data Acquisition Data

Quantifying wind turbine (WT) gearbox fatigue life is a critical problem for preventive maintenance when unsolved. This paper proposes a practical approach that uses ten minutes’ average wind speed of Supervisory Control and Data Acquisition (SCADA) data to quantify a WT gearbox’s gear fatigue life....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2017-08, Vol.10 (8), p.1084
Hauptverfasser: Qiu, Yingning, Chen, Lang, Feng, Yanhui, Xu, Yili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantifying wind turbine (WT) gearbox fatigue life is a critical problem for preventive maintenance when unsolved. This paper proposes a practical approach that uses ten minutes’ average wind speed of Supervisory Control and Data Acquisition (SCADA) data to quantify a WT gearbox’s gear fatigue life. Wind turbulence impacts on gearbox fatigue are studied thoroughly. Short-term fatigue assessment for the gearbox is then performed using linear fatigue theory by considering WT responses under external and internal excitation. The results shows that for a three stage gearbox, the sun gear in the first stage and pinions in the 2nd and 3rd stage are the most vulnerable parts. High mean wind speed, especially above the rated range, leads to a high risk of gearbox fatigue damage. Increase of wind turbulence may not increase fatigue damage as long as a WT has an instant response to external excitation. An approach of using SCADA data recorded every ten minutes to quantify gearbox long-term damages is presented. The calculation results show that the approach effectively presents gears’ performance degradation by quantifying their fatigue damage. This is critical to improve WT reliability and meaningful for WT gearbox fatigue assessment theory. The result provides useful tools for future wind farm prognostic maintenance.
ISSN:1996-1073
1996-1073
DOI:10.3390/en10081084