Effects of Normoxia, Hyperoxia, and Mild Hypoxia on Macro-Hemodynamics and the Skeletal Muscle Microcirculation in Anesthetised Rats

Objectives: Excessive oxygen (O 2 ) administration may have a negative impact on tissue perfusion by inducing vasoconstriction and oxidative stress. We aimed to evaluate the effects of different inhaled oxygen fractions (FiO 2 ) on macro-hemodynamics and microvascular perfusion in a rat model. Metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in medicine 2021-05, Vol.8, p.672257-672257
Hauptverfasser: Damiani, Elisa, Casarotta, Erika, Orlando, Fiorenza, Carsetti, Andrea, Scorcella, Claudia, Domizi, Roberta, Adrario, Erica, Ciucani, Silvia, Provinciali, Mauro, Donati, Abele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives: Excessive oxygen (O 2 ) administration may have a negative impact on tissue perfusion by inducing vasoconstriction and oxidative stress. We aimed to evaluate the effects of different inhaled oxygen fractions (FiO 2 ) on macro-hemodynamics and microvascular perfusion in a rat model. Methods: Isoflurane-anesthetised spontaneously breathing male Wistar rats were equipped with arterial (carotid artery) and venous (jugular vein) catheters and tracheotomy, and randomized into three groups: normoxia (FiO 2 21%, n = 6), hyperoxia (FiO 2 100%, n = 6) and mild hypoxia (FiO 2 15%, n = 6). Euvolemia was maintained by infusing Lactate Ringer solution at 10 ml/kg/h. At hourly intervals for 4 h we collected measurements of: mean arterial pressure (MAP); stroke volume index (SVI), heart rate (HR), respiratory rate (by means of echocardiography); arterial and venous blood gases; microvascular density, and flow quality (by means of sidestream dark field videomicroscopy on the hindlimb skeletal muscle). Results: MAP and systemic vascular resistance index increased with hyperoxia and decreased with mild hypoxia ( p < 0.001 in both cases, two-way analysis of variance). Hyperoxia induced a reduction in SVI, while this was increased in mild hypoxia ( p = 0.002). The HR increased under hyperoxia ( p < 0.05 vs. normoxia at 3 h). Cardiax index, as well as systemic O 2 delivery, did not significantly vary in the three groups ( p = 0.546 and p = 0.691, respectively). At 4 h, microvascular vessel surface (i.e., the percentage of tissue surface occupied by vessels) decreased by 29 ± 4% in the hyperoxia group and increased by 19 ± 7 % in mild hypoxia group ( p < 0.001). Total vessel density and perfused vessel density showed similar tendencies ( p = 0.003 and p = 0.005, respectively). Parameters of flow quality (microvascular flow index, percentage of perfused vessels, and flow heterogeneity index) remained stable and similar in the three groups. Conclusions: Hyperoxia induces vasoconstriction and reduction in skeletal muscle microvascular density, while mild hypoxia has an opposite effect.
ISSN:2296-858X
2296-858X
DOI:10.3389/fmed.2021.672257