A Context-Aware Android Malware Detection Approach Using Machine Learning

The Android platform has become the most popular smartphone operating system, which makes it a target for malicious mobile apps. This paper proposes a machine learning-based approach for Android malware detection based on application features. Unlike many prior research that focused exclusively on A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2022-12, Vol.13 (12), p.563
Hauptverfasser: AlJarrah, Mohammed, Yaseen, Qussai, Mustafa, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Android platform has become the most popular smartphone operating system, which makes it a target for malicious mobile apps. This paper proposes a machine learning-based approach for Android malware detection based on application features. Unlike many prior research that focused exclusively on API Calls and permissions features to improve detection efficiency and accuracy, this paper incorporates applications’ contextual features with API Calls and permissions features. Moreover, the proposed approach extracted a new dataset of static API Calls and permission features using a large dataset of malicious and benign Android APK samples. Furthermore, the proposed approach used the Information Gain algorithm to reduce the API and permission feature space from 527 to the most relevant 50 features only. Several combinations of API Calls, permissions, and contextual features were used. These combinations were fed into different machine-learning algorithms to show the significance of using the selected contextual features in detecting Android malware. The experiments show that the proposed model achieved a very high accuracy of about 99.4% when using contextual features in comparison to 97.2% without using contextual features. Moreover, the paper shows that the proposed approach outperformed the state-of-the-art models considered in this work.
ISSN:2078-2489
2078-2489
DOI:10.3390/info13120563