On the structure of spikes

Spikes are an important class of 3-connected matroids. For an integer , there is a unique binary r-spike denoted by Zr. When a circuit-hyperplane of Zr is relaxed, we obtain another spike and repeating this procedure will produce other non-binary spikes. The es-splitting operation on a binary spike...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AKCE international journal of graphs and combinatorics 2020-09, Vol.17 (3), p.883-886
Hauptverfasser: Ghorbani, Vahid, Azadi, Ghodratollah, Azanchiler, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spikes are an important class of 3-connected matroids. For an integer , there is a unique binary r-spike denoted by Zr. When a circuit-hyperplane of Zr is relaxed, we obtain another spike and repeating this procedure will produce other non-binary spikes. The es-splitting operation on a binary spike of rank r, may not yield a spike. In this paper, we give a necessary and sufficient condition for the es-splitting operation to construct Zr+1 directly from Zr. Indeed, all binary spikes and many of non-binary spikes of each rank can be derived from the spike Z3 by a sequence of the es-splitting operations and circuit-hyperplane relaxations.
ISSN:0972-8600
2543-3474
DOI:10.1016/j.akcej.2019.08.002