Positive solutions of conformable fractional differential equations with integral boundary conditions
In this paper, we discuss the existence of positive solutions of the conformable fractional differential equation T α x ( t ) + f ( t , x ( t ) ) = 0 , t ∈ [ 0 , 1 ] , subject to the boundary conditions x ( 0 ) = 0 and x ( 1 ) = λ ∫ 0 1 x ( t ) d t , where the order α belongs to ( 1 , 2 ] , T α x (...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2018-09, Vol.2018 (1), p.1-12, Article 137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we discuss the existence of positive solutions of the conformable fractional differential equation
T
α
x
(
t
)
+
f
(
t
,
x
(
t
)
)
=
0
,
t
∈
[
0
,
1
]
, subject to the boundary conditions
x
(
0
)
=
0
and
x
(
1
)
=
λ
∫
0
1
x
(
t
)
d
t
, where the order
α
belongs to
(
1
,
2
]
,
T
α
x
(
t
)
denotes the conformable fractional derivative of a function
x
(
t
)
of order
α
, and
f
:
[
0
,
1
]
×
[
0
,
∞
)
↦
[
0
,
∞
)
is continuous. By use of the fixed point theorem in a cone, some criteria for the existence of at least one positive solution are established. The obtained conditions are generally weaker than those derived by using the classical norm-type expansion and compression theorem. A concrete example is given to illustrate the possible application of the obtained results. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-018-1056-1 |