Quasilinear Dirichlet problems with competing operators and convection
The paper deals with a quasilinear Dirichlet problem involving a competing ( )-Laplacian and a convection term. Due to the lack of ellipticity, monotonicity and variational structure, the known methods to find a weak solution are not applicable. We develop an approximation procedure permitting to es...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2020-12, Vol.18 (1), p.1510-1517 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper deals with a quasilinear Dirichlet problem involving a competing (
)-Laplacian and a convection term. Due to the lack of ellipticity, monotonicity and variational structure, the known methods to find a weak solution are not applicable. We develop an approximation procedure permitting to establish the existence of solutions in a generalized sense. If in place of competing (
)-Laplacian we consider the usual (
)-Laplacian, our results ensure the existence of weak solutions. |
---|---|
ISSN: | 2391-5455 1874-1177 2391-5455 1874-1177 |
DOI: | 10.1515/math-2020-0112 |