Quasilinear Dirichlet problems with competing operators and convection

The paper deals with a quasilinear Dirichlet problem involving a competing ( )-Laplacian and a convection term. Due to the lack of ellipticity, monotonicity and variational structure, the known methods to find a weak solution are not applicable. We develop an approximation procedure permitting to es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2020-12, Vol.18 (1), p.1510-1517
1. Verfasser: Motreanu, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper deals with a quasilinear Dirichlet problem involving a competing ( )-Laplacian and a convection term. Due to the lack of ellipticity, monotonicity and variational structure, the known methods to find a weak solution are not applicable. We develop an approximation procedure permitting to establish the existence of solutions in a generalized sense. If in place of competing ( )-Laplacian we consider the usual ( )-Laplacian, our results ensure the existence of weak solutions.
ISSN:2391-5455
1874-1177
2391-5455
1874-1177
DOI:10.1515/math-2020-0112