Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD)-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-05, Vol.6 (5), p.056006-056006-6
Hauptverfasser: Oikawa, T., Yokota, H., Ohkubo, T., Hono, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD)-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4943058